
Towards an Approach for Service-Oriented Product Line Architectures

Flávio Mota Medeiros1,2 Eduardo Santana de Almeida2,3

Silvio Romero de Lemos Meira1,2,3

Federal University of Pernambuco (UFPE)1

Reuse in Software Engineering (RiSE)2

Recife Center for Advanced Studies and Systems (C.E.S.A.R.)3

{fmm2,srlm}@cin.ufpe.br esa@rise.com.br

Abstract

Service-Oriented Architecture (SOA) has appeared as
an emergent approach for developing distributed appli-
cations as a set of self-contained and business-aligned
services. SOA aids solving integration and interoperability
problems and provides a better Information Technology
(IT) and business alignment, giving more flexibility for the
enterprises. However, SOA does not provide support for
high customization and systematic planned reuse to develop
applications that fit customer individual needs. In this
paper, we propose an approach in which SOA applications
are developed as Software Product Lines (SPLs). Thus,
the term Service-Oriented Product Line is used for service-
oriented applications that share common parts and vary in
a regular and identifiable manner. In this context, high
customization and systematic planned reuse are achieved
through managed variability and the use of a two life-cycle
model as in SPL engineering: core assets and product
development. We conclude the paper with an initial case
study in the conference management domain explaining the
steps of our approach.

1. Introduction

In software development, there is an essential need to
reduce costs, effort, and time to market of software products
[1]. It is crucial to develop flexible systems able to adapt
to market changes quickly [2]. In addition, there are lots
of different technologies appearing, and enterprises need
to integrate their software investments (legacy systems)
with these new technologies [3]. However, the complexity
and size of systems are increasing, and products must fit
customer or market segment needs [4].

In this context, SOA is an emergent approach to solve
integration and interoperability problems [5, 6], align IT
and business goals, and increase business flexibility [2].

However, SOA lacks on support for high customization and
systematic planned reuse. In other words, despite of the
natural way of achieving customization in service-oriented
applications, changing service order or even the partici-
pants of service compositions, services are not designed
with variability to be highly customizable and reusable
in specific contexts. In addition, service artifacts, e.g.,
specifications and models, are not designed with variability
as well. Hence, these artifacts cannot be easily reused by a
family of service-oriented applications [7].

Thus, SPL engineering, which has the principles of
variability, customization and systematic planned reuse in
its heart, can be used to aid SOA to achieve these benefits.
In this path, service-oriented applications that support a
particular set of business processes can be developed as
SPLs [8, 9]. The motivation for it is to achieve desired
benefits such as productivity gains, decreased development
costs and effort, improved time to market, applications
customized to specific customers or market segment needs,
and competitive advantage [4, 10].

In this paper, we propose an approach for service-
oriented product line architectures that combines SPL and
SOA concepts and techniques to achieve high customiza-
tion, systematic planned reuse and the desired benefits
mentioned before.

Hence, the concept of managed variability and system-
atic planned reuse were introduced into service-oriented
development activities. In order to deal with these concepts,
the development process was divided in two life cycles as in
SPL engineering [4, 11]. The first, core assets development,
produces generic artifacts with variability to establish a
production capability for applications. The second, product
development, resolves the variation points of the generic
artifacts produced in core asset development and creates ap-
plications customized to specific customers. Management
at the technical and organizational levels during core assets
and product development must be strongly committed to the
success of the product line [12].



The reminder of this paper is organized as follows.
Section 2 presents an overview of the approach for service-
oriented product line architectures, and Section 3 describes
its inputs, outputs and activities in details. A case study on
the conference management domain is presented in Section
4. Related work is discussed in Section 5, and, Section 6
presents some concluding remarks and directions for future
work.

2. Approach Overview

In this section, an overview of the approach for service-
oriented product line architectures is presented. It is a
top-down approach for the systematic identification, and
documentation of service-oriented core assets supporting
the non-opportunistic reuse of SOA.

The approach is based on the architectural style shown in
Figure 1. This architectural style was adapted from [13, 14],
which present a complete list of layers commonly used in
SOA development. As mentioned, the architectural style is
divided into layers, each of them with specific purposes as
described next.

Components

Services

Service
Orchestrations

Graphical User
Interfaces (GUI)

Legend: DependencyOptional Variation Point

Figure 1. Architectural Style.

The interface layer is composed of Graphical User Inter-
faces (GUI) components. This layer may be used only by
service-oriented product lines that require visual interfaces
to interact with services and service orchestrations. The
orchestration service layer consists of composite services,
which implement coarse-grained business activities, or even
an entire business process, that need the participation and
interaction of several fine-grained services. The service
layer is composed of self-contained and business-aligned
services, which implement fine-grained business activities.
Finally, the component layer, which consists of a set
of components that provide functionality for the services
exposed in the service layer and maintain their Quality of
Service (QoS).

Note that the architectural elements (components, ser-
vices, service orchestrations and user interface components)
of these layers are developed with variability, and they can
be mandatory, optional or alternative.

As mentioned previously, the approach is divided in
two life cycles as in software product line engineering

[4, 11]: core assets and product development. The core
assets development aims to provide guidelines and steps
to identify, document and implement generic architectural
elements with variability. During product development,
these architectural elements are specialized to a particular
context according to specific customer requirements or
market segments needs.

In this paper, we focus on the core assets development.
In particular, on the design of domain specific architectures
for service-oriented product lines. Thus, we provide guide-
lines and steps for the identification and documentation
of components, services, service orchestrations and their
flows using a top-down approach. In other words, the
identification of architectural elements from existing legacy
systems, the bottom-up approach, is not considered in this
work. The following section presents the inputs, outputs
and activities of the approach for service-oriented product
line architectures in more details.

3. The Approach

The approach for service-oriented product line architec-
tures starts with an identification phase. It receives the
feature model and the business process models as manda-
tory inputs, and produces a list of possible components,
service candidates and service orchestration candidates for
the product line architecture. Thus, these architectural
elements can be reused in all products of the line. This
phase is separated in component identification and service
identification activities.

Subsequently, there is a variability analysis activity.
It receives the list of components and services identified
previously, and defines and documents key architectural
decisions regarding variability. In this activity, it is defined
how the variability will be implemented within the services
and components.

Architecture specification activity concludes the ap-
proach. In this activity, the architecture is documented using
different views in order to represent the concerns of the
different stakeholders involved in the project [15].

Figure 2 shows the inputs, outputs and activities of the
approach for service-oriented product line architectures.

Component
Identification

Service

Identification

Architecture
Specification

Architecture
Document

Feature
Model

Component
List

Business
Process
Models Service

List

Architectural
Decisions

OutputInputLegend:

Variability
Analysis

Figure 2. Activities of the Approach.

The next sections present the activities of the approach in
more details. An initial case study clarifying and explaining
these activities with examples is presented in Section 4.



3.1 Component Identification

In this activity, the components of the service-oriented
product line will be identified. We consider a software
component as a self-contained artifact with well-defined
interfaces and subject to third-party compositions [16].

This activity starts with an analysis of the feature
model to identify architectural component candidates. The
purpose of this activity is to put features into modules
(components) in order to design an architecture where com-
ponents can be added or removed to generate customized
products. Each of the modules identified in this activity will
be an architectural component candidate for the service-
oriented product line architecture.

In order to clarify this activity, we will use an alternative
feature with two variants as example. In this case, each
variant will be placed in a different component. Thus, the
behavior of each variant can be put in a product by adding
or removing one of the components. Since the features
are alternative, only one of the components will be present
in a product. However, in some cases, depending on the
variability granularity, it may be appropriated to put both
features in a unique component and add internal variability.
This issue will be discussed in variability analysis activity
in Section 3.3.

The components identified in this activity will maintain
the quality of the services in the product line. Thus,
identify components considering quality attributes, e.g.,
modifiability and reusability, is appropriated. However,
some quality attributes, e.g., security and performance, will
be responsibility of the service platform selected as well
[17].

Existing software components can be considered for
integration in this activity to increase reuse. The next
section presents the service identification activity, which
provides some guidelines and steps to identify service and
service orchestration candidates.

3.2 Service Identification

The identification of service candidates is a challenging
task of service-oriented computing [18, 19]. In the context
of service-oriented product lines, service identification
activity is even harder due to concerns with commonalities
and variability.

In the service identification activity, a set of service and
service orchestration candidates that support the business
processes are identified. Thus, as the services are supposed
to support the business processes, it is reasonable to identify
them from the business process models [3, 5, 20].

This activity starts with an analysis of the business
process models. In this analysis, the processes themselves,
their sub-processes and business process activities are

considered as service or service orchestration candidates,
it depends on their granularity. Concurrently, key business
entities are identified, and service candidates are created
to implement their life cycle methods, e.g., create, delete,
update and retrieve [3]. Finally, service candidates are
defined to implement utility functionalities that support the
services and service orchestrations identified previously,
e.g., logging, monitoring and data transformation, when
necessary.

We present a top-down approach for service identifi-
cation, but it does not exclude existing services to be
considered for integration during this activity. The service
identification activity provides a service portfolio with all
the service candidates identified as output. The next section
presents the variability analysis activity.

3.3 Variability Analysis

According to [21], variability is the ability to change
or customize software systems. Improving variability in
a system implies making it easier to do certain kinds of
customizations. Moreover, it is possible to anticipate some
types of variability and construct a system in such a way
that it is prepared for inserting predetermined changes.

At this point, the possible components, and the service
and service orchestration candidates of the service-oriented
product line have been identified. During the variability
analysis activity, it is defined and documented essential
architectural decisions about how the variability presented
in the feature model and business processes will be imple-
mented within services and components.

The variability analysis activity starts with an analysis
of the component and service candidates identified. The
similarities and differences among services should be
analyzed with the purpose of reduce the number of service
candidates. The similarity analysis consists of comparing
the functionality of services in order to join similar services
that implement fine-grained variability, e.g., variability
that can be implemented by changing a class attribute or
method. In this case, services will be joined in a single
service with internal variability. The same analysis is
realized among the component candidates. At this point, the
services and components are no longer candidates anymore.

Subsequently, it is analyzed how the variation points will
be implemented within the components. Component-Based
Development (CBD) can be used as an implementation
technique, i.e., each variant is implemented in a different
component. Alternatively, well known variability imple-
mentation techniques can be used to implement component
internal variability, e.g., aspect-oriented programming, con-
ditional compilation, configuration files and design patterns
[22]. The same thing occurs with the services. In this
case, service orientation can be used as a technique to



implement variability, i.e., each variant can be implemented
in a service. It is the way the current service-oriented
applications are customized, changing service order or even
the participants of service compositions to implement vari-
ability. However, depending on the variability granularity it
may be insufficient. A variation point can be implemented
changing a class attribute, or a class, a method or even
an entire component or service. Thus, in some cases it is
necessary to introduce service internal variability.

In order to implement service internal variability, i.e.,
a unique service that can be customized to different
purposes, the service interface, in some cases, must re-
flect the underlying variability the service contains in its
components and classes. Thus, conditional compilation
and parameterization can be used with the purpose of
change service interfaces or modify the service behavior
according to specific customer requirements. The use of
code transformation tools is used in [17] to implement
service interface variability.

Variability analysis activity produces as output a set
of architectural decisions regarding variability that will be
specified during architecture specification activity, which is
presented in the next section.

3.4 Architecture Specification

In the architecture specification activity, the components,
services, service orchestrations and their flows will be
specified, i.e., the architecture will be specified. In this
activity, the models and specification are produced with
variability as all the artifacts of core assets development.
Architecture specification requires notations with support
for variability representation.

Software architectures are complex entities that cannot
be represented in a simple one-dimensional fashion [15].
Since there are different stakeholders involved in a project
with particular concerns about the system, it is important to
represent the architecture upon different views.

During architecture specification, the first step is the
definition of component and service interfaces. Subse-
quently, different architectural views can be produced:
structural view, layer view, interaction view, dependency
view, concurrency view and physical view. Each view is
described in detail next.

The structural view represents the architecture static
structure. This view shows the components, services
and service orchestrations of the architecture. The layer
view presents the services organized in their layers. The
interaction view shows how the services and components
communicate to realize a specific functionality. The
dependency view presents dependence information among
services and components. The concurrency view shows par-
allel communication among services and components, but it

can be represented in the interaction view as well. Finally,
the physical view shows how the services and components
are distributed and the protocol of communication.

Some UML diagrams with stereotypes and variability
extensions, such as [23, 24], can be used to create these
views. As examples, the component diagram can be used
to represent the structural view and dependency view of
components, the interaction and concurrency view can be
represented with sequence diagrams, and the dependency
view of services can be created with interfaces, stereotypes
and dependency arrows in class diagrams.

The next section presents a case study on the conference
management domain using the approach.

4. Case Study

In this section, we introduce an initial case study on
the conference management domain in order to clarify and
explain our approach. The case study consists of a service-
oriented product line that intends to produce customized
service-oriented applications for the management of differ-
ent conferences.

Part of the feature model of the service-oriented product
line is presented in Figure 3, and its features are described
next.

Conference

Submission Review

Accept / Reject

Notification

Complete Partial Result NewsIndication

Automatic Manual

Assignment

[1..1]

[1..2]

Legend: Alternative [min..max] Numberof VariantsOptional

Confirmation

Figure 3. Feature Model.

• Submission: authors can submit their complete papers
or, first submit the abstract, followed by the complete
version. Complete and partial submissions are alterna-
tive features.

• Review: the indication of papers to reviewers can be
made automatically and/or manually. Reviewers can
also accept or reject paper indications. Automatic and
manual indications are not exclusive, they can work
together.

• Notification: the system can send information to
reviewers about paper assignments. It can send
acceptance or rejection (result) information to authors.
It can also send event news, e.g., deadlines, and con-
firmation messages, e.g., paper or review submitted, to
authors and reviewers. Event news notification is an



optional feature. Assignments, confirmation and result
notifications are mandatory.

Applying the technique for component identification,
we finish with the following component candidates: com-
plete submission, partial submission, review management,
automatic indication, manual indication, and assignment,
result, confirmation and news notification components.
The complete and partial submission components were
separated because they are alternative features, and only one
of them will be bound to an application. The same thing for
the automatic and manual indication components, which are
an alternative non-exclusive choice, only one, or both will
be present in an application. The variants and mandatory
sub-features of the notification feature were also put each
one in a different component. There are other components,
e.g., access control, user management that were excluded
from the paper due to space limitations.

Figure 4 shows the simplified paper submission business
process. It starts with two optional activities, authors
submit the abstract of the paper and receive a confirmation.
Afterward, the authors submit the complete version of the
paper and receive a confirmation again. Finally, after the
reviews finish, the authors receive the result (acceptance and
rejection) messages.

Figure 5 shows the simplified review business process.
First, the system indicates papers to reviewers automatically
and/or manually (chair indication). The reviewers receive
the notification about the papers to review. They can reject
or accept the reviews, and next, they receive a confirmation
about the action they have performed. Finally, the reviewers
submit their reviews and receive a confirmation again.

From these business processes, the following service
candidates were identified: abstract submission, paper sub-
mission, review management, notification and orchestration
services (submit process, review process) for the whole
processes. The components of access control and user
management mentioned above do not need to be exposed
as services because they do not bring any business value to
these business processes.

Submit Abstract Confirmation Submit Paper Confirmation Result

MandatoryOptionalLegend:

Figure 4. Submission Business Process.

Assigment Accept / Reject Confirmation Submit Review Confirmation

Figure 5. Review Business Process.

After the identification of the components and services
candidates, we try to reduce the number of candidates

defining how the variability will be implemented. For
instance, the abstract submission and paper submission
service candidates can be reduced to only one service.
However, variability is introduced to the service interface
in order to reflect that the service operation submit paper
abstract is optional. The automatic and manual indication
components, which assign papers to reviewers can be
implemented in a unique component, but the variability
should be introduced internally using SPL variability tech-
niques, e.g., design patterns. In the case of the notification
feature, its sub-features (assignment, results, confirmation
and news) were put all in a unique component with internal
variability because the variability granularity of these sub-
features was low. We also use only one service with internal
variability to exposed the notification component, however,
this service also required interface variability in order to
reflect that the news notification feature is optional.

During architecture specification, the architectural views
are created. Figure 6 shows a dependency view of the
orchestration service for the submission business process.
As it can be seen, the submission service contains a variable
operation in order to reflect the variability implemented
in the partial and complete submission components. The
same thing for the notification service, which has an
optional operation as well to reflect that the news feature
is optional. As another architectural view example, Figure
7 shows the interaction view of the submission process.
The steps related with partial submission (submit abstract
and its confirmation message) will be removed of the
documentation when the feature complete submission is
selected.

+<<optional>> submitAbstract()
+submitCompletePaper()

«service»

Submission

«alternative»

Partial Submission
«alternative»

Complete Submission
Notification

+sendConfirmation()
+sendAssignment()

+<<optional>> sendNews()

«service»

Notification

«service»

Paper Submission Orchestration

+sendResult()

Figure 6. Dependency View.

5. Related Work

Two different approaches for business process modeling
based on product line principles exploiting commonalities
and variability through domain engineering are presented
in [8, 9]. Both works realize processes able to adapt
themselves to different customers or market segment needs.
Thus, the resulting SOA systems that automate them will be



«service»

Notification

«service»

Submission

<<optional>> submitAbstract ()

<<optional>> sendConfirmation()

<<optional>> confirmation

<<optional>> confirmation

Top Package::Author

submitPaper ()

sendConfirmation()

confirmation

confirmation

resultConfirmation

Author

Figure 7. Interaction View.

suitable to different customer needs as the underlying pro-
cesses. However, none of them concerns the identification
of services candidates or gives information about the com-
ponents that realize the service implementation. In addition,
the work is not concerned with architecture specification
and documentation, and focus on web service technologies
such as BPEL. We solve these gaps in our work providing
information on how to identify and specify services and
components regarding variability issues. Moreover, our
approach does not focus on any specific technology.

An approach for developing service-oriented product
lines is presented in [18, 25]. It proposes a service
identification method based on the feature binding analysis
technique [26]. However, it does not consider the business
processes and it may identify service candidates that are not
aligned with the business goals. The service identification
technique of our approach is based on the techniques used
in service-oriented development [3, 20]. Thus, we identify
services from an analysis of the business processes.

In [17], a development process for web services is
proposed. It analyzes a particular software product line
development process and compares it with the service-
oriented product line process proposed. It concludes the
paper with an example for a service-oriented product line
web store that basically uses a code tranformation tool to
implement service interface variability. In our work, we
suggest some techniques for the implementation of service
interface variability, not only the use of code transformation
tools, but also well known techniques used in SPL, e.g.,
conditional compilation and parametrization.

6. Conclusions and Future Work

This work presents a contribution to the combination of
SOA and SPL concepts. In particular, how these concepts
can be used together to achieve desired benefits such as
improved reuse, decreased development costs and time to
market, and production of flexible applications customized
to specific customers or market segment needs.

In order to achieve these goals, we presented an ap-

proach for service-oriented product line architectures that
introduces the concepts of managed variability into service-
oriented world and uses a two life-cycle model as in SPL
engineering, however, only core assets development is
considered in this work. These concepts were introduced
in order to provide support for high customization and
systematic planned reuse during service-oriented develop-
ment. In this context, services are developed to be reused
in specific contexts and service-oriented applications can
be developed rapidly and customized according to specific
customer requirements. We also present a case study on the
conference management domain clarifying and explaining
the activities of the approach.

As a future work, we are planning to apply this service-
oriented product line architecture approach to others do-
mains and validate the real benefits of the combination
of SOA and SPL that we have used in this work. In
addition, we are performing a case study using different
technologies and techniques for service internal variability
implementation in order to identify the real differences,
if they exists, from object-oriented and component-based
variability implementation.

Acknowledgements

This work was partially supported by the National
Institute of Science and Technology for Software En-
gineering (INES1), funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08 and Brazil-
ian Agency (CNPq process number 475743/2007-5).

References

[1] F. J. v. d. Linden, K. Schmid, and E. Rommes,
Software Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2007.

[2] S. Carter, The New Language of Business: SOA & Web
2.0. IBM Press, 2007.

[3] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah,
S. Ganapathy, and K. Holley, “SOMA: A method for
developing service-oriented solutions,” IBM System
Journal, vol. 47, no. 3, pp. 377–396, 2008.

[4] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[5] T. Erl, Service-Oriented Architecture: Concepts, Tech-
nology, and Design. Upper Saddle River, NJ, USA:
Prentice Hall, 2005.

1INES - http://www.ines.org.br



[6] M. P. Papazoglou and W.-J. V. D. Heuvel, “Service-
oriented design and development methodology,” Inter-
national Journal of Web Engineering and Technology
(IJWET), vol. 2, no. 4, pp. 412–442, 2006.

[7] A. Helferich, G. Herzwurm, and S. Jesse, “Software
product lines and service-oriented architecture: A
systematic comparison of two concepts,” in SPLC ’07:
11th International Software Product Line Conference,
IEEE Computer Society, 2007.

[8] N. Boffoli, D. Caivano, D. Castelluccia, F. M. Maggi,
and G. Visaggio, “Business process lines to develop
service-oriented architectures through the software
product lines paradigm,” in SPLC ’08: 12th Inter-
national Software Product Line Conference, pp. 143–
147, 2008.

[9] E. Ye, M. Moon, Y. Kim, and K. Yeom, “An approach
to designing service-oriented product-line architecture
for business process families,” in ICACT ’07: 9th
International conference on Advanced Computing
Technologies, pp. 999–1002, 2007.

[10] S. Cohen and R. Krut, eds., Proceedings of the
First Workshop on Service-Oriented Architectures and
Software Product Lines, 11th International Software
Product Line Conference, 2007.

[11] K. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles
and Techniques. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2005.

[12] L. Northrop, “Sei’s software product line tenets,”
IEEE Software, vol. 19, pp. 32–40, July 2002.

[13] A. Arsanjani, “Service-oriented modeling and archi-
tecture,” tech. rep., Service-Oriented Architecture and
Web services Center of Excellence, IBM, 2004.

[14] A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam,
and K. Channabasavaiah, “S3: A service-oriented
reference architecture,” IT Professional, vol. 9, no. 3,
pp. 10–17, 2007.

[15] L. Bass, P. Clements, and R. Kazman, Software Ar-
chitecture in Practices. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

[16] C. Szyperski, “Component technology: what, where,
and how?,” in ICSE ’03: 25th International Confer-
ence on Software Engineering, pp. 684–693, IEEE
Computer Society, 2003.

[17] S. Günther and T. Berger, “Service-oriented product
lines: Towards a development process and feature

management model for web services,” in SPLC ’08:
12th International Software Product Line Conference,
pp. 131–136, 2008.

[18] J. Lee, D. Muthig, and M. Naab, “An approach
for developing service oriented product lines,” in
SPLC ’08: 12th International Software Product Line
Conference, pp. 275–284, IEEE Computer Society,
2008.

[19] D. Kang, C. yang Song, and D.-K. Baik, “A method
of service identification for product line,” in ICCIT
’08: 3rd International Conference on Convergence
and Hybrid Information Technology, vol. 2, pp. 1040–
1045, 2008.

[20] A. Erradi, S. Anand, and N. Kulkarni, “Soaf: An
architectural framework for service definition and
realization,” in SCC ’06: Proceedings of the IEEE
International Conference on Services Computing,
pp. 151–158, IEEE Computer Society, 2006.

[21] J. V. Gurp, J. Bosch, and M. Svahnberg, “On the
notion of variability in software product lines,” in
WICSA ’01: 2nd Working IEEE/IFIP Conference on
Software Architecture, p. 45, 2001.

[22] C. Gacek and M. Anastasopoules, “Implementing
product line variabilities,” SSR ’01: Symposium on
Software Reusability, vol. 26, no. 3, pp. 109–117,
2001.

[23] H. Gomaa, Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures. Addison Wesley, 2004.

[24] M. Razavian and R. Khosravi, “Modeling variability
in business process models using uml,” in ITNG
’08: 5th International Conference on Information
Technology - New Generations, pp. 82–87, 2008.

[25] J. Lee, D. Muthig, and M. Naab, “Identifying and
specifying reusable services of service centric sys-
tems through product line technology,” in SPLC ’07:
11th International Software Product Line Conference,
IEEE Computer Society, 2007.

[26] J. Lee and K. C. Kang, “Feature binding analysis
for product line component development,” in PFE
’03: 5th International Workshop on Software Product-
Family Engineering, pp. 250–260, 2003.


